Motoaki KAWASE


Selected List of Publications

Japanese


PEFC

  1. Motoaki Kawase, Tatsuya Inagaki, Shota Kawashima, and Kouichi Miura,
    “Effective Thermal Conductivity of Gas Diffusion Layer in Through-Plane Direction”
    ECS Transactions, 25(1), 1529–1537 (2009).

  2. Motoaki Kawase, Tatsuya Inagaki, and Kouichi Miura,
    “Nonisothermal through-plane transport model of PEMFC with local VLE assumption”
    ECS Transactions, 16(2), 563–573 (2008).

CVD

  1. Motoaki Kawase, Takafumi Ito, and Kouichi Miura,
    “In-Situ Infrared Spectroscopy of Hydrocarbons in a Pyrocarbon CVD Reactor”
    ECS Transactions, 25(8), 349–355 (2009).

  2. Motoaki Kawase and Kouichi Miura,
    “Pyrocarbon growth from allene and allylene by chemical vapor deposition”
    ECS Transactions. 2(7), 3–10 (2007).

  3. Motoaki Kawase, Hiroshika Goshima, and Kouichi Miura,
    “Reduced elementary reaction model of the propane pyrolysis”
    Studies in Surface Science and Catalysis, 159, 217–220 (2006).

  4. Motoaki Kawase and Kouichi Miura,
    “Rate analysis of chemical vapor deposition by use of the thin tubular reactor”
    Thin Solid Films, 498, 25–29 (2006).

  5. Motoaki Kawase, Hiroshika Goshima, Takeshi Nakai, and Kouichi Miura,
    “Reduction of the elementary reaction model of hydrocarbon pyrolysis in chemical vapor deposition of carbon”
    Proceedings of the 10th APCChE Congress (Kitakyushu, Sep, 2004), Paper #3P-08-048 (10 pp.) (2004).

  6. Motoaki Kawase, Takeshi Nakai, Hiroshika Goshima, and Kouichi Miura,
    “Chemical vapor deposition rate of pyrolytic carbon from hydrocarbons”
    Book of Abstracts of the 18th International Symposium on Chemical Reaction Engineering (Chicago, Jun, 2004), (2004).

  7. Motoaki Kawase, Kenichi Kawano, Takao Masuda, and Kouichi Miura,
    “Growth kinetics of a carbon–silicon carbide graded layer from propane and dimethyldichlorosilane”
    Proceedings of the 17th International Symposium on Chemical Reaction Engineering (Hong Kong, August, 2002), MS# 0167 (22 pp.) (2002).

  8. T. Tago, M. Kawase, Y. Ikuta, and K. Hashimoto,
    “Numerical simulation of the thermal-gradient chemical vapor infiltration process for production of fiber-reinforced ceramic composite”
    Chemical Engineering Science 56(6), 2161–2170 (2001).

  9. T. Tago, M. Kawase, and K. Hashimoto,
    “Numerical analysis method for growth kinetics of chemical vapor deposition of alumina using a non-isothermal CVD reactor”
    Kagaku Kogaku Ronbunshu 26(6), 763–769 (2000). [in Japanese]

  10. T. Tago, M. Kawase, K. Morita, and K. Hashimoto,
    “Fabrication of silicon carbide whisker/alumina composite by thermal-gradient chemical vapor infiltration”
    J. Amer. Ceram. Soc., 82, 3393–3400 (1999).

  11. M. Kawase, T. Tago, M. Kurosawa, H. Utsumi, and K. Hashimoto,
    “Chemical vapor infiltration and deposition to produce a silicon carbide-carbon functionally gradient material”
    Chemical Engineering Science, 54, 3327–3334 (1999).

  12. T. Tago, M. Kawase, Y. Yoshihara, and K. Hashimoto,
    “Growth kinetics of chemical vapor deposition of beta-SiC from (CH3)2SiCl2/Ar”
    Journal of the Electrochemical Society, 145, 2516–2522 (1998).

  13. T. Tago, M. Kawase, Y. Masaki, and K. Hashimoto,
    “Growth kinetics of chemical vapor deposition of Al2O3
    Kagaku Kogaku Ronbunshu, 24(1), 81–85 (1998). [in Japanese]

  14. M. Kawase, T. Nakai, A. Yamaguchi, T. Hakozaki, and K. Hashimoto,
    “Numerical simulation of plasma chemical vapor deposition from silane: effects of the plasma-substrate distance and hydrogen dilution,”
    Jpn. J. Appl. Phys., 36, 3396–3407 (1997).

  15. Y. Sawada, H. Tamaru, M. Kogoma, M. Kawase, and K. Hashimoto,
    “The reduction of copper oxide thin films with hydrogen plasma generated by an atmospheric-pressure glow discharge,”
    J. Phys. D: Appl. Phys., 29, 2539–2544 (1996).

  16. M. Kawase, T. Tago, and K. Hashimoto,
    “Production of silicon carbide whisker/alumina composite by chemical vapor infiltration method,”
    Proceedings of the 5th World Congress on Chemical Engineering (San Diego, 1996), Vol. 4, Session 73, pp. 181–185 (1996).

  17. M. Kawase and K. Hashimoto,
    “Numerical simulation of amorphous silicon production reaction”
    Chemical Engineering (Tokyo), 1995(2), 104–110 (1995). [in Japanese]

  18. M. Kawase, Y. Ikuta, T. Tago, T. Masuda, and K. Hashimoto,
    “Modeling of a thermal-gradient chemical vapor infiltration process for production of silicon carbide whisker/alumina composite,”
    Chemical Engineering Science, 49, 4861–4870 (1994).

  19. M. Kawase, T. Masuda, M. Nagashima, T. Maki, Y. Miyamoto, and K. Hashimoto,
    “Effects of plasma-substrate distance on properties of hydrogenated amorphous silicon deposited from hydrogen-diluted silane,”
    Japanese Journal of Applied Physics, 33, 3830–3836 (1994).

  20. K. Hashimoto, K. Miura, T. Masuda, M. Toma, H. Sawai, and M. Kawase,
    “Kinetic analysis of polycrystalline silicon growth from silane using a rod-substrate CVD reactor”
    Kagaku Kogaku Ronbunshu, 16, 438–446 (1990). [in Japanese]

  21. K. Hashimoto, K. Miura, T. Masuda, M. Toma, H. Sawai, and M. Kawase,
    “Growth kinetics of polycrystalline silicon from silane by thermal chemical vapor deposition method,”
    Journal of the Electrochemical Society, 137, 1000–1007 (1990).

Precipitation

  1. Motoaki Kawase and Kouichi Miura,
    “Fine particle synthesis by continuous precipitation using a tubular reactor”
    Advanced Particle Technology, 18(6), 725–738 (2007).

  2. Motoaki Kawase, Tomomitsu Suzuki, and Kouichi Miura,
    “Growth mechanism of lanthanum phosphate particles by continuous precipitation”
    Chemical Engineering Science, 62(18–20), 4875–4879 (2007).

  3. Motoaki Kawase, Tomomitsu Suzuki, Hiroshika Goshima, Tsunekata Kobata, and Kouichi Miura,
    “Effects of the pH and mixing temperature on the continuous precipitation of lanthanum phosphate”
    Studies in Surface Science and Catalysis, 159, 833–836 (2006).

  4. Motoaki Kawase, Tsukasa Kitagawa, Yosuke Tomoshige, and Kouichi Miura,
    “Continuous precipitation of inorganic salt particles by tubular reactor”
    Proceedings of the 10th APCChE Congress (Kitakyushu, Sep, 2004), Paper #1C-10 (9 pp.) (2004).

  5. Motoaki Kawase, Takao Masuda, Akio Nakanishi, Naoto Kijima, and Kouichi Miura,
    “Continuous synthesis of monodisperse LAP phosphor particles by precipitation”
    Proceedings of the 17th International Symposium on Chemical Reaction Engineering (Hong Kong, August, 2002), MS# 0168 (20 pp.) (2002).

SMB

  1. Axel Pilgrim, Motoaki Kawase, Fumihiko Matsuda, and Kouichi Miura,
    “Modeling of the simulated moving-bed reactor for the enzyme-catalyzed production of lactosucrose”
    Chemical Engineering Science 61(2), 353–362 (2006).

  2. K. Murakami, K. Fujita, A. Pilgrim, and M. Kawase,
    “Production of lactosylfructoside (lactosucrose) using the simulated moving-bed bioreactor”
    Seito Gijutsu Kenkyukaishi, 51(6), 13–18 (2003). [in Japanese]

  3. Motoaki Kawase, Axel Pilgrim, and Kouichi Miura,
    “Application of the simulated moving-bed reactor to the enzyme-catalyzed production of lactosucrose”
    Proceedings of the 9th APCChE Congress and CHEMECA 2002 (Christchurch, Sep–Oct, 2002), Paper # 125 (17 pp.) (2002).

  4. Axel Pilgrim, Motoaki Kawase, Masayasu Ohashi, Koki Fujita, Kazufumi Murakami, Kenji Hashimoto,
    “Reaction kinetics and modeling of the enzyme catalyzed production of lactosucrose using beta-fructofuranosidase from Arthrobacter sp. K-1”
    Biosci. Biotechnol. Biochem. 65(4), 758–765 (2001) .

  5. M. Kawase, A. Pilgrim, T. Araki, and K. Hashimoto,
    “Lactosucrose production using a simulated moving-bed reactor,”
    Chemical Engineering Science 56(2), 453–458 (2001).

  6. M. Kawase, Y. Masaki, J. Fricke, T. Tanigawa, and K. Hashimoto,
    “Separation of reactants in the simulated moving-bed reactor”
    Proceedings of the Asia-Pacific Chemical Reaction Engineering Symposium 99 (Hong Kong, June, 1999), pp. 263–268 (1999).

  7. M. Kawase, Y. Inoue, T. Araki, and K. Hashimoto,
    “The simulated moving-bed reactor for production of bisphenol A”
    Catalysis Today, 48, 199–209 (1999).

  8. M. Kawase and K. Hashimoto,
    “Simultaneous reaction and separation processes by use of the simulated moving-bed apparatus”
    Sekiyu Gakkaishi, 40(6), 454–464 (1997). [in Japanese]

  9. M. Kawase and K. Hashimoto,
    “Simultaneous reaction and separation processes by use of a simulated moving-bed apparatus”
    Chemical Engineering (Tokyo), 1996(5), 390–396 (1996). [in Japanese]

  10. M. Kawase, T. B. Suzuki, K. Inoue, K. Yoshimoto, and K. Hashimoto,
    “Increased esterification conversion by application of the simulated moving-bed reactor,”
    Chemical Engineering Science, 51, 2971–2976 (1996).

  11. K. Hashimoto, M. Kawase, S. Adachi, and Y. Shirai,
    “Comparison of efficiency in the separation of binary components between a conventional batch chromatographic system and a simulated moving-bed adsorber,”
    Proceedings of APCChE & CHEMECA 93 (Melbourne, 1993), 2, 307–312 (1993).

Others

  1. Ingmar Gerlach, Motoaki Kawase, and Kouichi Miura,
    “Preparation of nanosized metal (oxides) by gas phase hydrolysis using mesoporous materials as nanoreactors”
    Journal of Nanoparticle Research. 11(8), 2049–2059 (2009). (DOI 10.1007/s11051-008-9570-1)

  2. Ingmar Gerlach, Motoaki Kawase, and Kouichi Miura,
    “In situ-preparation of supported precious metal and metal oxide nanoparticles by nanoreactor flash pyrolysis”
    Microporous and Mesoporous Materials, 122, 79–86 (2009).

  3. Ingmar Gerlach, Motoaki Kawase, and Kouichi Miura,
    “Preparation of immobilized nanostructured titania by using mesoporous carbons as nanoreactors: Investigation of process parameters”
    Journal of Chemical Engineering of Japan, 41(6), 497–506 (2008).

  4. Kouichi Miura, Motoaki Kawase, Ryuichi Ashida, Ingmar Gerlach, and Taisuke Yamamoto,
    “Nano-reactor for producing high performance nanomaterials”
    Chemical Engineering Science, 62(18–20), 5655–5660 (2007).

  5. Motoaki Kawase, Tsunekata Kobata, Ingmar Gerlach, Hiroyuki Nakagawa, and Kouichi Miura,
    “Conversion of tar in hot coke oven gas by pyrolysis”
    CD-ROM Proceedings of the 21st Annual International Pittsburgh Coal Conference (Osaka, 16 Sep 2004), Paper Number 216 (13 pp.), Oral Session 48-3 (2004).

  6. Kouichi Miura, Motoaki Kawase, Hiroyuki Nakagawa, Ryuichi Ashida, Takeshi Nakai, Taichi Ishikawa,
    “Conversion of tar in hot coke oven gas by pyrolysis and steam reforming”
    Journal of Chemical Engineering of Japan 36, 735–741 (2003).

  7. Takao Masuda, Tadashi Asanuma, Mitsuru Shouji, Shin R. Mukai, Motoaki Kawase, Kenji Hashimoto,
    “Methanol to olefins using ZSM-5 zeolite catalyst membrane reactor”
    Chemical Engineering Science 58, 649–656 (2003).

  8. T. Masuda, Y. Okubo, S. R. Mukai, M. Kawase, K. Hashimoto, A. Shichi, A. Satsuma, and T. Hattori,
    “Effective diffusivities of lighter hydrocarbons in Cu- and Co-MFI type zeolite catalysts”
    Chemical Engineering Science 56(3), 889–896 (2001).

  9. Y. Shirai, M. Kawase, and K. Hashimoto,
    “A plant factory system with solar batteries and its influential effects”
    Kagaku Kogaku Ronbunshu, 19, 928–931 (1993). [in Japanese]

  10. K. Hashimoto, T. Masuda, and M. Kawase,
    “Measurement of intracrystalline diffusivities of HZSM-5 zeolite at higher temperatures and predictions of shape selectivity,”
    Studies in Surface Science and Catalysis, 46, 485–494 (1989).



Return to Kawase's Home Page
Return to Chemical Reaction Engineering Home page
Return to Chemical Engineering Home page

Most recent update: Jan 4, 2010
For more information contact Motoaki KAWASE
E-mail: kawasecheme.kyoto-u.ac.jp